FLOW OF A POLYMER SOLUTION AS THE MOTION
OF A MEDIUM WITH ADDITIONAL INTERNAL
DEGREES OF FREEDOM
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The method for calculating the flow of dilute polymer solutions near walls is derived on the
basis of an analysis of the interaction of elastic polymer particles with a turbulent newtonian
solvent.

If foreign (e.g., polymer) particles are suspended in a newtonian liquid, and if the moment of inertia
of these particles is negligible, the physical properties of the resulting two-phase medium, treated as a
continuum, differ from those of the original newtonian liquid only by the Einstein correction to the viscos-
ity [1].

If the polymer particles have a significant moment of inertia, on the other hand, the two-phase me-
dium has more complicated properties, due to the appearance of additional internal degrees of freedom
in rotational motion [2,3]. This freedom corresponds to a continuous exchange of angular momentum be-
tween the polymer particles and the surrounding newtonian liquid; the rate of these relaxation processes
depends on the inertia of the polymer particles. As a reaction to the change in the internal moment of
such a medium, antisymmetric stresses arise [2-4]; such stresses are of course not involved in classical
models of continuous media. The relaxation processes which occur in polymer solutions are accompanied
by a dissipation of part of the kinetic energy of the flow, and this dissipation can be thought of as the work
associated with antisymmetric stresses [4].

On the basis of these arguments we can write the equation for the average turbulent motionof polymer
solutions for a constant boundary-layer stress as
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The total relaxational dissipation can be thought of as the sum of the relaxational expenditures of the
average and turbulent motion, Dy = Dyg + Dyt . Although the turbulent relaxational viscosity vyt corre-
sponding to relaxational dissipation Dyt does not appear explicitly among the parameters in (2) which go-
vern the motion in (1), it must be involved in the problem, since it governsthe vortical viscosity, given by

F M —exp [—.L (M)” (Xath/ VoV } @)
Vo Vo ! % Ve /s (Veivol

Equation (3) matches the laws governing the behavior in the immediate vicinity of the wall (¢ € vy) and in
the turbulent zone (¢ » vy). These laws are obtained through a dimensional analysis, through the use of
the continuity condition and the boundary conditions at the wall, and through an analysis of a simplified
energy balance for the Kline eddy structures near the walls, which govern the rate at which turbulent
energy is generated [5].

To determine the dissipation rates Dy, Dyy, and Dyt and the corresponding functions vE, vpg, and
vyt, we analyzed the interaction of polymer particles with a2 newtonian solvent undergoing turbulent
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fluctuations in a flow with a shear average velocity. By "polymer particle” we mean either a macromole-
cule or a supermolecular formation (association). We do not place any limitations on the dimensions of
these particles, and we assume them to be ellipsoidal, like chain macromolecules, with an arbitrary ratio
1 of the axes of the ellipsoid.

The Einstein viscogity v g is calculated from the known [6] functions of the relative shear oy = (dU,
/dx,)W/kpT for laminar flow. 1In this generalization to the case of turbulent flow we take into account,
along with the disorientation of the particles resulting from their thermal (Brownian) bombardment by
solvent molecules, the disorientation because of turbulent fluctuations.

We expressed the inertial retardation of the particles during their rotation in the flow in terms of
the rotational relaxation time TR = (J + j)/W. By determining the relaxational-dissipation rate, which is
known to be proportional to the mean square difference between the angular velocities of the particles and
the surrounding solvent, we find the following eguations for the relaxational viscosities:
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where M, in the case of an association, is to be understood as the factor by which the molecular weight of
the association is greater than that of the polymer, or the factor by which the volume of the association
is greater than that of the macromolecule. It follows from (4) that the energy of the average motion is
dissipated in a relaxational manner among nonspherical particles (I # 1) alone,

The parameters vE, Vra, and vrt are affected by the size h and shape ! of the polymer particles,
which can be deformed as a result of the dynamic effects of the flow. By analyzing these effects and spe-
cifying the elastic forces in the polymer particle after Frenkel' [4], we find the following differential
equation for the deformation of the particle in a shear flow:
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We cannot use the familiar Peterlin equation [6] for P(p) here, since it was derived on the basis of assump-

tions of laminar flow, a small relative shear 0, and inertialess particles — assumptions which do not

hold for our problem. When these assumptions are not used in solving the Fokker—Planck diffusion equa-
tion, which the function P{y) obeys, the following expression is found [7]:
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Fig. 2. Frictional drag for a tube. 1) ¢ =107¢ g/cm?;
2) 5-10"% 3) 1075; 4) 10™%; 5) water (c = 0).
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and o is the generalized relative shear, which takes into account both Brownian and turbulent disorienta-
tion. It turns out that the turbulent disorientation is more important than the Brownian disorientation for
the type of flow under consideration here. As a result, in a shear turbulent flow the active wall turbulence
produces a predominant orientation of the polymer particles such that these particles are subjected to ten-
sile stresses from the flow for a longer period of time than that over which they are subjected to compres~
sional stresses.

The rest of the calculation can be outlined as follows: through a numerical integration of Eq. (7)
using (8) and a subsequent averaging, we determine the average statistical lengths and shapes of the poly-
mer particles at various points Xy = xsu*/vg in the flow at which the values of the shear are g = dUy/dx;
and we determine the turbulence levels in a first approximation as if there were no polymer additives in
the flow. Then, for the same points ?{2, we determine the parameters vy, vra, and vy, which we use to
calculate the vortical viscosity in (3); then a numerical integration of Eq. (1) leads to a profile of the
average velocity in the second approximation. This new state of the turbulent flow is used to analyze the
behavior of the polymer particles in it, and the entire calculation is repeated uniil the desired steady state
is reached. A computer is quite suitable for this calculation, and an ALGOL program has been written
for this problem. Some calculated results are shown in Figs. 1-3.

Figure 1 shows the evolution of the average-velocity profile as a function of the Reynolds number Rqg
for the flow of a WSR-301 polyox solution at a concentration of ¢ = 107 g/ecm? in a tube 35 mm in diameter.
It is easy to see that with log Rg = 3.66 the velocity profile in the solution is the same as that in the pure
solvent; i.e., this type of flow is "subthreshold.” At high Reynolds numbers the profiles approach the
saturation asymptote (the dashed line) which has been observed in many experiments,

Figure 2 shows the dependence of the frictional drag on the Reynolds number for various concentra—
tions ¢ of the WSR~-301 polyox solution for a tube of the same diameter.

The results of these and other calculations, whose resulis are similar o those shown in Figs. 1 and
2, agree well with the available experimental data, correctly predicting the most important behavior: the
nature of the effect of the solution concentration and the Reynolds number on the shape of the average-
velocity profile and the frictional drag (and the absence of such an effect at Reynolds numbers below thresh-
old); the dependence of the threshold Reynolds numbers on the tube diameter; and the saturation in the
effect of the polymer at certain concentrations and certain Reynolds numbers. The calculated results
agree well with the experimental data for the following initial dimensions h; and shapes ! of the polymer
particles: ;= 5-14 and hy = 1100-1700 u for WSR-301 polyox; ;> 1,5~4.0 and hy = 870-980 u for guar
resin. These dimensions are about two-thirds the values observed experimentally by Kalashnikov and
Kudin {8], but both are much larger than the macromolecular values, so that the hydrodynamic effects of
polymer additives observed in these experiments are apparently due to associations.
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Figure 3a shows the distribution of the Einstein and average relaxational viscosities over the thick-
ness of the boundary layer, and Fig. 3b shows the Boussinesq eddy viscosity, for various concentrations
of the WSR-301 polyox and for various Reynolds numbers. We see that for the dilute solutions the Ein-
stein viscosity has essentially no effect on the flow, since it is much smaller than the molecular, the
average relaxational, and the eddy viscosities in any part of the flow. On the other hand, the average re-
laxational viscosity dominates nearly everywhere, except in the zone of pronounced turbulence, where it
is less important than the eddy viscosity. This eddy viscosity is so weak in polymer solufions (Fig. 3b)
that the decrease in the associated Reynolds stresses dominates over the additional relaxational stresses
which arise in the average flow, which are ultimately responsible for the reduction of the frictional drag.
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NOTATION

is the component of the average velocity along the wall;
is the distance to the wall;

is the viscosity of the solvent;

is the density of the solution;

is the dynamic velocity;

are the fluctuation correlation and Boussinesq eddy viscosity;
arethe Einstein, average relaxational, and turbulent relaxational
dissipations;

are the corresponding effective viscosities;

is the von Karman constant;

is a constant;

is the coefficient of rotational friction between the particle and
the solvent;

is the Boltzmann constant;

is the absolute temperature;

is Avogardro's number;

are the intrinsic and additional moments of inertia of the par-

ticle;

are the unperturbed and deformed lengths of the particle;

is the function of the shape of the ellipsoid;

is the angle specifying the particle orientation;

is the probability for this orientation;

is the viscous-friction coefficient for flow around the particle;
is the generalized relative shear of the average velocity;



Rg is the Reynolds number along a {ube diameter;

Rx is the Reynolds number along the longitudinal
coordinate on a plate;
x is the friction coefficient in the tube;

kR = 3.2(w/vw o/husx); wg = 0.8Wyw/Volw y/usk TR).
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