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The method for calculating the flow of dilute polymer  solutions near  walls is derived on the 
basis  of an analysis  of the interact ion of elast ic po lymer  par t ic les  with a turbulent newtonian 
solvent.  

If foreign (e. g., polymer)  par t ic les  a re  suspended in a newtonian liquid, and if the moment  of inert ia  
of these par t ic les  is negligible, the physical  proper t ies  of the result ing two-phase medium, t rea ted  as a 
continuum, differ f rom those of the original newtonian tiquid only by the Einstein cor rec t ion  to the v i scos -  
ity [11. 

If the po lymer  par t ic les  have a significant moment of inert ia,  on the other hand, the two-phase me-  
dium has more  complicated proper t ies ,  due to the appearance of additional internal degrees  of f reedom 
in rotat ional  motion [2, 3]. This f reedom corresponds  to a continuous exchange of angular momentum be-  
tween the polymer  par t ic les  and the surrounding newtonian liquid; the ra te  of these relaxation p rocesses  
depends on the iner t ia  of the po lymer  par t ic les .  As a react ion to the change in the internal moment  of 
such a medium, an t i symmet r ic  s t r e s se s  a r i se  [2-4]; such s t r e s s e s  a re  of course  not involved in c lass ica l  
models of continuous media.  The relaxation p rocesses  which occur  in po lymer  solutions a re  accompanied 
by a dissipation of par t  of the kinetic energy of the flow, and this dissipation can be thought of as the work 
associa ted with an t i symmet r ie  s t r e s s e s  [4]. 

On the basis  of these arguments  we can write the equation for the average  turbulent motionof  polymer  
solutions for a constant boundary- layer  s t r e s s  as 
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The total relaxational dissipation can be thought of as the sum of the relaxational expenditures of the 
average  and turbulent motion, D r = Dra  + D r t .  Although the turbulent relaxational v iscos i ty  Vrt c o r r e -  
sponding to relaxational  dissipation Drt  does not appear  explicitly among the pa rame te r s  in (2) which go-  
vern the motion in (1), it must  be involved in the problem, since it governs the vort ical  viscosi ty ,  given by 
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Equation (3) matches  the laws governing the behavior  in the immediate  vicinity of the wall (e ~ u w) and in 
the turbulent zone (e >> Uw). These  laws a re  obtained through a dimensional analysis ,  through the use of 
the continuity condition and the boundary conditions at the wall, and through an analysis  of a simplified 
energy balance for the Kline eddy s t ruc tures  near  the walls, which govern the ra te  at which turbulent 
energy is generated [5]. 

To determine the dissipation ra tes  DE, Dra,  and Drt  and the corresponding functions u E, Vra, and 
Vrt, we analyzed the interact ion of polymer  par t ic les  with a newtonian solvent undergoing turbulent 
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Fig.  ! ,  Ave rage -ve loc i ty  
p rof i le  as a function of the 
Reynolds number .  1) logR d 
= 3.66; 2) 4.19; 3) 4.88; 4) 
5.37; 5) 6.63; 6) 5.86. 

f luctuations in a flow with a shea r  ave r age  velocity.  By "po lymer  pa r t i c le"  we mean  ei ther  a m a c r o m o l e -  
cule or  a supe rm o l ecu l a r  fo rmat ion  (association).  We do not p lace  any l imitat ions on the dimensions of 
these  pa r t i c l e s ,  and we a s s u m e  them to be el l ipsoidal ,  l ike chain mac romolecu l e s ,  with an a r b i t r a r y  ra t io  
l of the axes  of the el l ipsoid.  

The  Einstein v i scos i ty  v E is calculated f rom the known [6] functions of the re la t ive  shea r  a0 = (dU1 
/dx2)W/kBT for  l am i na r  f low.  In this genera l iza t ion  to the case  of turbulent  flow we take into account,  
along with the d isor ienta t ion of the pa r t i c l e s  resul t ing  f rom the i r  t he rma l  (Brownian) bombardment  by 
solvent  molecu les ,  the d isor ienta t ion  because  of turbulent  f luctuations.  

We e x p r e s s e d  the iner t ia l  r e t a rda t ion  of the Par t i c les  during the i r  rota t ion in the flow in t e r m s  of 
the rotat ional  re laxa t ion  t ime  r lR= (J + j) /W. By determining the re laxa t iona l -d i ss ipa t ion  ra te ,  which is 
known to be  propor t iona l  to the mean  square  d i f ference  between the angular  veloci t ies  of the pa r t i c l e s  and 
the surrounding solvent ,  we find the following equations for  the re laxat ional  v i scos i t i e s :  
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where  M, in the case  of an associa t ion,  is to be unders tood as the fac tor  by which the molecu la r  weight of 
the assoc ia t ion  is g r e a t e r  than that  of the po lymer ,  or  the fac tor  by which the volume of the assoc ia t ion  
is g r e a t e r  than that  of the m ac rom ol ecu l e .  It follows f rom {4) that  the energy  of the ave rage  motion is 
d iss ipa ted  in a re laxat ional  manne r  among nonspher ica l  pa r t i c l e s  (l # 1) alone,  

The p a r a m e t e r s  VE, Vra, and Vrt a r e  affected by the s ize  h and shape l of the po lymer  pa r t i c l e s ,  
which can be deformed  as a r e su l t  of the dynamic effects  of the flow. By analyzing these  effects  and spe -  
cifying the e las t ic  fo rces  in the p o l y m e r  pa r t i c l e  a f t e r  F renke l '  [4], we find the following different ia l  
equation for  the deformat ion  of the pa r t i c l e  in a shea r  flow: 

dh =~P(gO sin2~ �9 . (7) 
dq~ 3z~ gffVo h3 h h 

We cannot use  the f a m i l i a r  Pe te r l in  equation [6] for  P(q~) he re ,  s ince it was der ived on the bas i s  of a s s u m p -  
tions of l amina r  flow, a smal l  r e l a t ive  shea r  no, and ine r t i a l e s s  pa r t i c l e s  - -  assumpt ions  which do not 
hold for  our p rob lem.  When these  assumpt ions  a r e  not used in solving the Fokke r - -P l anck  diffusion equa- 
tion, which the function P(r obeys,  the following express ion  is found [7]: 

P (,p) = ~-~ [P, (~) + �9 (.,  B) P,~ (~)1 [! -L- �9 (~, R)]- ' , (s) 
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Fig.  2. F r i c t i ona l  d r a g  for  a tube.  1) c = 10 -6 g / c m a ;  
2) 5"10-6;  3) 10-5; 4) 10-4; 5) w a t e r  (c = 0). 

where 

(I)-- 41'11 -I-__B ~ B  2; PI = 1 ', 4 sin (2~ -~- %); (9) 

V 1 - B ~ 
.Pzi = 1 - -  B cos (2~p ~ ~) ' 

B = [(l 3 - -  1)/(l ~ -k 1)] cos ~; tg~ = g*~ (10) 

and cr is the  g e n e r a l i z e d  r e l a t i v e  s h e a r ,  which takes  into account  both Brownian  and turbulent  d i s o r i e n t a -  
t ion.  It t u rns  out tha t  the tu rbu len t  d i so r i en ta t ion  is m o r e  impor t an t  than the Brownian  d i so r i en ta t ion  for  
the type  of flow unde r  c o n s i d e r a t i o n  h e r e .  As a r e su l t ,  in  a s h e a r  tu rbu len t  f low the ac t ive  wall  t u rbu l ence  
p r o d u c e s  a p r e d o m i n a n t  o r i en ta t ion  of  the p o l y m e r  p a r t i c l e s  such that  these  p a r t i c l e s  a r e  sub jec ted  to t en -  
s i le  s t r e s s e s  f r o m  the flow fo r  a l onge r  pe r iod  of t i m e  than that  o v e r  which they a r e  sub jec ted  to  e o m p r e s -  
s ional  s t r e s s e s .  

The  r e s t  of  the ca lcu la t ion  can be outl ined as  fol lows : th rough  a n u m e r i c a l  i n t eg ra t ion  of Eq. (7) 
us ing  (8) and a subsequen t  ave rag ing ,  we d e t e r m i n e  the  a v e r a g e  s t a t i s t i c a l  lengths and shapes  of  the  po ly -  
m e r  p a r t i c l e s  at  va r ious  points  x2 = x2u*/u0 in the flow at which the values  of the  s h e a r  a r e  g = dU1/dx 2 
and we d e t e r m i n e  the t u rbu lence  leve l s  in a f i r s t  app rox ima t ion  as  if t h e r e  w e r e  no p o l y m e r  addi t ives  in 
the flow. Then,  fo r  the  s a m e  points  ~2, we d e t e r m i n e  the p a r a m e t e r s  v E, Vra, and Vrt, which we use  to 
ca lcu la te  the vo r t i ca l  v i s c o s i t y  in (3); then a n u m e r i c a l  i n t eg ra t ion  of Eq. (1) leads  to a p ro f i l e  of the 
a v e r a g e  ve loc i ty  in the second  approx ima t ion .  This  new s ta te  of the  tu rbu len t  flow is u sed  to ana lyze  the 
b e h a v i o r  of the  p o l y m e r  p a r t i c l e s  in it,  and the en t i r e  ca lcu la t ion  is r e p e a t e d  until  the d e s i r e d  s t eady  s ta te  
is r e a c h e d .  A c o m p u t e r  is qui te  su i tab le  fo r  this  ca lcula t ion ,  and an  A L G O L  p r o g r a m  has  been  wr i t t en  
for  this p r o b l e m .  Some ca lcu la ted  r e s u l t s  a r e  shown in F igs .  1 -3 .  

F igu re  1 shows the evolut ion of  the a v e r a g e - v e l o c i t y  p ro f i l e  as a function of the Reynolds  n u m b e r  Rd 
fo r  the  flow of a WSR-301 po lyox  so lu t ion  at  a concen t r a t i on  of c = 10 -.5 g / c m  3 in a tube 35 m m  in d i a m e t e r .  
It is e a s y  to s ee  that  with l o g R d  = 3.66 the  ve loc i ty  p ro f i l e  in the so lu t ion  is the  s a m e  as  that  in the  p u r e  
so lvent ;  i . e . ,  this  type  of flow is " sub th re sho ld . "  At high Reynolds  n u m b e r s  the p ro f i l e s  app roach  the  
s a tu ra t i on  a s y m p t o t e  (the dashed  line) which has  been  o b s e r v e d  in m a n y  expe r imen t s .  

F igu re  2 shows the dependence  of the  f r i c t iona l  d rag  on the  Reynolds  n u m b e r  for  va r ious  c o n c e n t r a -  
t ions  c of the WSR-301 polyox so lu t ion  for  a tube of the s a m e  d i a m e t e r .  

The results of these and other calculations, whose results are similar to those shown in Figs. 1 and 
2, agree well with the available experimental data, correctly predicting the most important behavior: the 
nature of the effect of the solution concentration and the Reynolds number on the shape of the average- 
velocity profile and the frictional drag (and the absence of such an effect at Reynolds numbers below thresh- 
old); the dependence of the threshold Reynolds numbers on the tube diameter; and the saturation in the 
effect of the polymer at certain concentrations and certain Reynolds numbers. The ealeulated results 
agr,ee well with the experimental data for the following initial dimensions h 0 and shapes l 0 of the polymer 
particles: l 0 ~ 5-14 and h 0 = 1100-1700 p for WSR-301 polyox; l 0 --- 1.5-4.0 and h 0 = 870-980 p for guar 
resin. These dimensions are about two-thirds the values observed experimentally by Kalashnikov and 
Kudin [8], but both are much larger than the maeromoleeular values, so that the hydrodynamic effects of 
polymer additives observed in these experiments are apparently due to associations. 
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Fig. 3. Einstein and average  
relaxational viscosi ty  (a) and 
Boussinesq eddy viscosi ty {b) 
a s  functions of the distance to 
the wall, in dimensionless units. 
1) c = 10 -s g / c m  ~ and logRx 
= 8.36; 2) 10 -5 and 8.78; 3) 5 
�9 10 -5 and 8.40; 4) 10 -5 and 8.54; 
5) 5- 10 -5 and 8.80; 6) 5 .10  -5 

and 8.88; 7) water .  

Figure 3a shows the distribution of the Einstein and average relaxational viscosi t ies  over the thick- 
ness of the boundary layer ,  and Fig. 3b shows the Boussinesq eddy viscosi ty,  for various concentrations 
of the WSR-301 polyox and for various Reynolds numbers .  We see that for the dilute solutions the Ein- 
stein viscosi ty has essential ly no effect on the flow, since it is much smal le r  than the molecular ,  the 
average  relaxational,  and the eddy viscosi t ies  in any part  of the flow. On the other hand, the average r e -  
laxational v iscosi ty  dominates near ly  everywhere,  except in the zone of pronounced turbulence, where it 
is less important  than the eddy viscosi ty .  This eddy viscosi ty  is so weak in polymer  solutions {Fig. 3b) 
that the decrease  in the associa ted Reynolds s t r e s s e s  dominates over the additional relaxational s t r e s se s  
which a r i se  in the average  flow, which a re  ult imately responsible for the reduction of the frictional drag.  
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N O T A T I O N  

is the component of the average velocity along the wall; 
is the distance to the wall; 

is the viscosi ty  of the solvent ;  
is the density of the solution; 
is the dynamic velocity; 
a r e  the fluctuation corre la t ion  and Boussinesq eddy viscosi ty;  
a re  the Einstein, average  relaxational,  and turbulent relaxational 
dissipations; 

a re  the corresponding effective viscosi t ies ;  
is the von Karman constant; 

is a constant; 
is the coefficient of rotational fr ict ion between the par t ic le  and 
the solvent; 
is the Boltzmann constant; 
is the absolute tempera ture ;  
is Avogardro ' s  number;  
a re  the intr insic  and additional moments  of inert ia of the pa r -  
t icle; 
a re  the unperturbed and deformed lengths of the par t ic le ;  
is the function of the shape of the ellipsoid; 
is the angle specifying the par t ic le  orientation; 
is the probabili ty for  this orientation; 
is the v iscous- f r ic t ion  coefficient for flow around the part icle;  
is the general ized re la t ive  shear  of the average velocity;  
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Rx 

k R = 3.2(Vw/Vo)  w ( v J h u , ) ;  r R = 0.S(Uw/V0) w (v0/u2, rR) .  

is the Reynolds number  along a tube d iameter ;  
is the Reynolds number  along the longitudinal 
coordinate  on a plate; 
is the f r ic t ion coefficient  in the tube; 

!. 

2. 
3. 
4. 
5. 

6. 

7. 

8. 

LIT ERATURE CITED 

A. Einstein and M. yon Smoluchowski, Brownian Motion [Russian translation], ONTI, Moscow 
(1936). 
L. I. Sedov, Prikl. Matem. i Mekh., 32, 5 (1968). 
L. I. Sedov, Fluid Mechanics [in Russian], Vol. I, Fizmatgiz, Moscow (1970). 
Ya. I. Frenkel' (J. Frenkel), Kinetic Theory of Liquids, Clarendon Press, Oxford, England. 
V. A. Gorodtsov and A. I. Leonov, Preprint No. I0, in: Works of the Institute of Problems of 
Mechanics, Academy of Sciences of the USSR [in Russian] (1972). 
V. N. Tsvetkov, V. E. ~skin, and S. Ya. Frenkel', Structure ofMacromoleculesinSolutions [in 
Russian], Nauka, Moscow (1964). 
A. V. Smol'yakov, in: Questions of Improving the Seaworthiness of Ships [in Russian], Sudostroenie, 
Leningrad (1971), No. 168. 
V. N. Kalashnikov and A. M. Kudin, Preprint No. 6, in: Works of the Institute of Problems of 
Mechanics, Academy of Sciences of the USSR [in Russian] (1971). 

1519 


